
ROMifying a Program for Uploading to ROMXce+

Converting a program to run under ROMX (or ROMifying) can be a fairly simple task. There are
several different steps you need to take and they depend upon how the program is written. For this
tutorial we will only concern ourselves with machine language programs (those you can BRUN from
a disk or otherwise create as direct 6502 code that resides in a specific location in RAM). This
document pertains only to the ROMXc, ROMXe, ROMXc+, and ROMX+; if you have an original
ROMX for Apple II/II+, please see the document “ROMifying a Program for Uploading to ROMX
(original)” instead. You may also wish to study that document as some of the techniques outlined
there can also be applied to the later ROMX boards.

PART I – BASIC PROCESS

To work in ROMX, the code must fit into the (roughly) 16K of space from $C100-$FFFF or 32K
space if you use both high and low sections of a single bank. Larger programs can be handled by
splitting across multiple banks but we will not go into that here. If your program uses any F8 monitor
ROM routines, then you need to either duplicate them inside your program or include some or all of
the $F800-$FFFB space in your image (the RESET vector at $FFFC/D will definitely be changed).

There are two basic ways to ROMify code. The first involves rewriting the code so that it can run
from ROM. This would include:

1. Translating and relocating all code that uses absolute addressing.
2. Separating the code and variable storage and finding a suitable location in RAM for the variables.
3. Removing any self-modifying code or references to any standard ROM addresses, e.g. to identify
machine or ROM versions.
4. Modifying the exit process when the program is terminated.

While this may seem a bit daunting, there is a second method that is far simpler and fortunately will
work for the majority of programs. It works by relocating the entire program to ROM space - AS IS -
with little if any modification. A small loader program is then added that moves the code back into its
original RAM location at launch and then jumps to the starting address of the program. The code then
runs just as if it had been loaded from disk (except that the standard ROM - and possibly DOS -
might not be there).

For the rest of this tutorial we will describe this second method. We will also make the following
assumption: that the code is completely loaded into memory at one time and takes up less than
32,000 bytes (roughly 130 sectors on disk).

The steps to ROMify such code are then quite simple. We just need to break the code into two pieces
(assuming it is over 16,000 bytes) and then combine with the loader program into a single file. The
lower image is modified so that the reset vector points to our loader code. And the loader code is
configured with the starting and ending addresses of the ROM data as well as the destination address
in RAM. Finally, we tell the loader where to go after the code has been relocated into RAM.

The Tutorial ROMXCE 32K.dsk file that accompanies this document has several files for converting
programs to run under ROMX:

DISK VOLUME 254

 A 006 HELLO Standard Apple Language Card Loader
 B 131 TEMPLATE.32 Template Image for building 32K programs (no F8 Monitor ROM)
*B 128 CHOPLIFTER Original CHOPLIFTER Game as downloaded from the INTERNET ARCHIVE
*B 101 RASTER BLASTER Original RASTER BLASTER Game as downloaded from the INTERNET ARCHIVE
 A 026 INFO GEN 32 Program for adding rmx metadata to image

INTERNET ARCHIVE URL: https://archive.org

When first trying to get a program to run from ROM, it is often helpful to set the RESET vector to
$FF59 (the Monitor Entry point, assuming you are keeping the F8 ROM). When the image is loaded
using ROMX, it will immediately enter the Monitor (* prompt). Then you can examine the ROM
contents, execute the loader routine, and make changes or set breakpoints to the code in RAM.

Also note that 16K ROM images you create this way can be directly used with most (Apple IIe and
later) emulators. First you need to extract the image from the Apple environment into a file on the
host computer. CiderPress and AppleCommander are two great tools for doing this. Then you tell the
Emulator to use this file as its boot ROM. For example in Virtual II on the Mac, you launch a new
machine, click the Setup button, and select ROM memory under the Components section. You can
then pick “Use specific ROM” and select your image file (make sure it ends with “.ROM”). When
you hit Restart the virtual machine will start up with your image. With Applewin, you can use the
-rom option on the command line when you launch the program. Although your image may also work
on the ROMX+ in an Apple II/II+, it is not possible to use an Apple II/II+ emulator as the extra ROM
space ($C100-$CFFF) will not be accessible.

PART II – PREPARING IMAGES FOR ROMX

All ROMX boards can use half-size (16K) or full-size (32K) image files. While you can create 16K
images if that’s all you need, we’re going to assume you want as much space as possible for your
application. Just be aware that there is a slight issue with creating 32K files under DOS 3.3.
Normally, DOS will not let you save a file with a length of $8000 so you will need to either work in
ProDOS or modify DOS to allow this. The Tutorial dsk file that accompanies this document has such
a modified DOS. But if you ever find yourself trying to save a file and get the dreaded “RANGE
ERROR,” don’t panic! You can instantly modify DOS to accept your command by typing either:

 POKE 43364,255 (from the Basic), or
 A964:FF (from the Monitor)

Now let’s go over the hardware implementations of the ROMX. From the ROMXce+ API Reference
we have the following locations to use:

 ROMXc/e/+ SOFTSWITCHES

BANK0-F $F800-F80F ;Select Main System Bank 0-F
TXTBANK0-F $F810-F81F ;Select Main Text Bank 0-F
MAIN_LO $F820 ;Set System ROM Lo
MAIN_HI $F821 ;Set System ROM Hi
TXT_LO $F822 ;Set Text ROM Lo
TXT_HI $F823 ;Set Text ROM Hi
TMP_LOWER $F824 ;Set Temp Bank Lo
TMP_UPPER $F825 ;Set Temp Bank Hi
TMP_BANK0-F $F830-F83F ;Select Temp Bank 0-F
SEL_TBANK $F850 ;Select Temp Banks
SEL_MBANK $F851 ;Select Main Banks

With these addresses we can build an image that is activated by the ROMX menu and which can do
almost anything. For the rest of this tutorial we will see how to take a binary program image, prepare
it for ROM, and then craft a loader program that can be executed on launch to move the program into
the appropriate RAM location.

ROMifiying CHOPLIFTER!

In attempting to make Choplifter run on ROMX, I started with a cracked version of the program that
occupies 128 sectors on disk (see CHOPLIFTER on the dsk image file that accompanies this
document). That amounts to just under 32K so we know this will be a tight fit! Examining the file
with Copy II Plus reveals that this file loads at $07FD and the actual length is $7D10 (ending at
$850D). The actual starting address of the program is $2490.

We know the addresses $C000-$C0FF are unusable in each bank of ROM. Therefore after losing two
pages, we will have exactly $7DFF bytes left for the image and loader combined. Further
examination of the Choplifter binary file shows that the beginning of the file is just a JMP to the
starting address of the program so the bytes from $07FD-$07FF are not needed. And after allocating
4 bytes for the RESET and BRK vectors at $FFFC that leaves us $7DFF-7D10-4-3=$E8 bytes to
write our loader routine.

Furthermore, since we will need to switch banks while transferring the code, we have to account for
the ROM contents changing from underneath us so to speak. This is accomplished by having some or
all of the loader code run from RAM. Since we know that RAM above $850B is not part of the
program we can safely put a copy of our loader routine there and run it without worrying about bank
changes crashing our code. Thus I chose to copy and run the loader code at the top of RAM, $BF00
(at first glance anyway). So the memory map was shaping up this way:

LOW BANK
$FFFC-$FFFF : RESET and (unused) BRK vectors
$FF00-$FFFB : Loader routine including code to move itself into RAM
$C100-$FEFF : Application code (Part1)

HIGH BANK
$C100-$FFFF : Application code (Part2)

That would leave $C100-$FEFF in the low bank plus $C100-$FFFF in the high bank to hold the
program. Unfortunately, that only adds up to $7D00 bytes and we actually need $7D0D. So close!

The standard RAM copy routine that I used in other examples copies one page (256 bytes) at a time
and always on page boundaries. While this simplifies and shortens the code, it often copies more
bytes than we actually need. And in this case we need to save every byte we can. So I made one more
tweak to the loader code assuming that I wouldn’t need all of the space from $FF00-$FFFB for the
loader. This opened up any unused space there for those remaining few bytes. Specifically, I opted to
start the loader code at $FF80, which would then place it at $BF80 after moving to RAM. That
opened up $80 more bytes for program code, which was certainly enough.

CREATING CHOPLIFTER FROM THE TEMPLATE

To re-create a CHOPLIFTER image file from scratch using the TEMPLATE.32, perform the
following steps:

1. BLOAD the CHOPLIFTER file at $0FFD (to eliminate the initial JMP)
2. BSAVE CHOP1, A$1000, L$3E80
3. BSAVE CHOP2, A$4E80, L$3F00
4. BLOAD TEMPLATE.32
5. BLOAD CHOP1, A$1100
6. BLOAD CHOP2, A$5100
7. CALL -151 to enter Monitor
8. Modify the start address to begin execution: 4FC7:90 24
9. BSAVE MY CHOPLIFTER, A$1000, L$8000 (delete CHOP1 or use another disk)

When Uploading to ROMX don’t forget to add the &Sn command to the Description (where n is a
valid System ROM, e.g. 1). It will not run correctly without it.

Refer to the Listing below as we show line-by-line how the loader works. Starting at location $FF80
in ROM, the Launch code begins by copying itself from the $FF page in lower ROM to location
$BF80 in RAM (lines 31-34). Then we JMP to our code at $BF8D to continue the Launch code from
RAM.

Lines 37-49 now copy the program to location $800. First we copy the lower bank from $C100-FFFF
into $800-$46FF. The last byte of program code is now at $467F with a bogus copy of the loader in
$4680-$46FF but we will overwrite that in the next step.

Now we switch back to the firmware bank 0 (line 41) so that we can select the upper sub-bank (line
42). Then we re-activate our DOS bank (lines 43-44) and continue to copy the rest of the program
from the upper bank. But our copy destination now needs to start right after the last location from the

first pass. That would be location $4680. So we modify our CopyLp routine to move pages to
locations starting at xx80. Thus we copy $C100-$FFFF into $4680-$857F. All the program code is
now in RAM at the correct location.

Finishing up, we get back to bank 0 and retrieve the initial System ROM bank passed to us by the
firmware at $02A6 (line 51-52). Then we preset and activate that user bank (lines 53-55). Finally,
lines 56-60 perform some initialization and then jump to the starting location of the program, $2490
(after manually patching).

TEMPLATE.32 LISTING

 1 * ROMXce 32K IMAGE TEMPLATE
 2 * J. Mazur 8/16/21
 3
 4 * PART 1 - 0000-3FFF MAIN ROM
 5 * PART 2 - 4000-7FFF AUX ROM
 6 *
 7 * Part 2 overwrites 1 page of part 1
 8
 9 * Ver 955s 8/10/21 Added ZipSlo to copy routine
 10
 11 DSK TEMPIMAGE
 12
 13 OurBank EQU $0287 ;Our bank
 14 RealBank EQU $02A6 ;Bank we need to run in
 15 RAM_LOC EQU $0800 ;Change per program
 16 START_LOC EQU $0800 ;Start of program
 17 INTCXROMOFF EQU $C006 ;Enable slot ROM C100-C1FF
 18 INTCXROMON EQU $C007 ;Enable main ROM C100-C1FF
 19 ZipSlo EQU $C0E0 ;ZIP CHIP slowdown
 20 BANK0 EQU $F800
 21 TMP_LOWER EQU $F824
 22 TMP_UPPER EQU $F825
 23 TMP_BANK0 EQU $F830 ;Latch temp bank#
 24 SEL_MBANK EQU $F851 ;Select Main bank reg
 25 INIT EQU $FB2F
 26 SETVID EQU $FE93
 27 SETKBD EQU $FE89
 28
 29 ORG $BF80 ;Start of Image
 30
BF80: 8D 07 C0 31 Launch STA INTCXROMON ;Turn //e ROM ON
BF83: A2 FF 32 LDX #/$FF80 ;Move our code
BF85: A9 BF 33 LDA #$BF ;to $BF80
BF87: 20 D6 FF 34 JSR CopyLp+$4000 ;$FFD1
BF8A: 4C 8D BF 35 JMP Launch2-Launch+$BF80 ;and execute it there
 36
BF8D: A2 C1 37 Launch2 LDX #/$C100 ;SOURCE hi-byte
BF8F: A9 08 38 LDA #/RAM_LOC ;TARGET hi-byte
BF91: 20 D6 BF 39 JSR CopyLp
 40
BF94: 20 C9 BF 41 JSR SelBnk0 ;Enable firmware Bank 0
BF97: 2C 25 F8 42 BIT TMP_UPPER ;Switch sub-bank for Part 2
BF9A: AE 87 02 43 LDX OurBank ;Get back to our bank & copy
BF9D: BD 30 F8 44 LDA TMP_BANK0,X
BFA0: A2 C1 45 LDX #/$C100 ;SOURCE hi-byte
BFA2: A9 80 46 LDA #$80 ;move 1/2 pages
BFA4: 8D D9 BF 47 STA CopyLp+3
BFA7: A9 46 48 LDA #/RAM_LOC+$3E00 ;TARGET hi-byte
BFA9: 20 D6 BF 49 JSR CopyLp
 50
BFAC: 20 C9 BF 51 JSR SelBnk0
BFAF: AE A6 02 52 LDX RealBank
BFB2: 29 0F 53 AND #$0F

BFB4: BD 00 F8 54 LDA BANK0,X ;Prepare to launch
BFB7: 2C 51 F8 55 BIT SEL_MBANK
BFBA: 20 2F FB 56 JSR INIT
BFBD: 20 93 FE 57 JSR SETVID
BFC0: 20 89 FE 58 JSR SETKBD
BFC3: 8D 06 C0 59 STA INTCXROMOFF ;Turn //e ROM OFF
BFC6: 4C 00 08 60 JMP START_LOC
 61
 62 SelBnk0
BFC9: 2C E0 C0 63 BIT ZipSlo ;Slow down for accelerators
BFCC: 2C CA FA 64 BIT $FACA ;So we don't use cached data
BFCF: 2C CA FA 65 BIT $FACA
BFD2: 2C FE FA 66 BIT $FAFE
BFD5: 60 67 RTS
 68
BFD6: 85 03 69 CopyLp STA $03
BFD8: A9 00 70 LDA #$00
BFDA: 85 02 71 STA $02
BFDC: A9 00 72 LDA #$00
BFDE: 85 00 73 STA $00
BFE0: 86 01 74 CpyLp2 STX $01
BFE2: A0 00 75 LDY #$00
 76
BFE4: B1 00 77 :2 LDA ($00),Y ;do 256 bytes
BFE6: 91 02 78 STA ($02),Y
BFE8: C8 79 INY
BFE9: D0 F9 80 BNE :2
BFEB: E6 03 81 INC $03
BFED: E8 82 INX
BFEE: 2C E0 C0 83 BIT ZipSlo ;Keep accelerators off
BFF1: E0 00 84 SrcEnd CPX #/$0000 ;END OF SOURCE hi-byte
BFF3: D0 EB 85 BNE CpyLp2 ;do xx pages
BFF5: 60 86 RTS
 87
BFF6: 00 00 00 88 DS $BFFC-*
BFF9: 00 00 00
 89 ERR *-1/$BFFC ;Make sure we haven't overrun
 90
BFFC: 00 00 91 DA $0000 ;RESET vector (not used)
BFFE: 80 FF 92 DA Launch+$4000 ;BRK vector (our launch)

CREATING AN IMAGE FROM THE TEMPLATE

In general, you can use the included TEMPLATE.32 file to easily create your own image for ROMX.
First make sure that your program consists of a single binary file that is less than $7D80 bytes (larger
programs or those that load multiple files from disk can be ROMified but that is beyond the scope of
this document). Find the starting address of where it loads and then if necessary pad the file to start
on an even page boundary and re-save. Then do the following:

1. BLOAD the program file at $1000
2. BSAVE PROG1, A$1000, L$3E80
3. BSAVE PROG2, A$4E80, L$3F00
4. BLOAD TEMPLATE.32
5. BLOAD PROG1, A$1100
6. BLOAD PROG2, A$5100
7. If the program loads anywhere other than $800, do a CALL-151
8. Modify the location where part1 will be located: 4F90:xx (where xx00 is start address)
9. Modify the location where part2 will be located: 4FA8:xx (ramloc + $3E)
10. Modify the start address to begin execution: 4FC7:lo hi (execute at $hilo)
11. BSAVE <your great image>, A$1000, L$8000

Finally, if you make a really cool image that you would like to share with others, please contribute to
theRomExchange.com. Before sending however, please add some rmx metadata to describe your
image:

 1. BLOAD <your great image> ,A$1000 (Loads at $1000-$8FFF)
 2. RUN INFO.GEN.32 (from the ROMX Utilities disk)
 3. Enter Description and Additional Info (Adds metadata to image)
 4. BSAVE <image name>.RMX, A$1000, L$8100 (Saves complete rmx image)

CREATING PRODOS IMAGES FROM SYSTEM FILES

Creating images for ProDOS System applications can often be done with just three easy steps:

In ProDOS:

• BLOAD PRODOS.2.4.2 (from ROMX Apps2.po)
• BLOAD (app.SYSTEM file) , TSYS, A$1100 (Must be less than $3E00 in length)
• BSAVE (your image) , A$1000, L$8100 (keeps original RMX metadata)

This may not work for all .SYSTEM files, but it’s always worth a try!

PART III – ADDITIONAL OPTIONS

If your program has a Quit option or exits after performing its task, you may wish to return to the
ROMX menu when the program is finished. From the ROMXce+ API Reference, we know that we
can enable the firmware with the following sequence:

 BIT $FACA
 BIT $FACA
 BIT $FAFE

At this point, with the ROMX firmware active we can either boot another image by executing:

 BIT $F80n (n=bank to launch)
 BIT $F851 (activate bank)
 JMP (FFFC) (Jump to RESET vector location in boot image)

Or we can re-launch the ROMX menu with:

 JMP $DFD0 (Jump to ROMX Menu loader)

Launching the ROMX menu this way will simulate a power-on condition, with the normal countdown
to activate the default bank. If you want to manually initialize the firmware and drop into the menu
without using the countdown feature, use this:

 JSR $DFD9 (moves ROMX code to RAM)
 JSR $1012 (init ROMX code in RAM)
 JMP $103C (launch ROMX Menu in RAM)

CREATING IMAGES THAT WORK WITH ACCELERATORS

If you want your image to work correctly when running with an accelerator, there are a few extra
steps to take. Most of the work is done for you by the firmware, which will slow down the CPU speed
to 1 MHz when the ROMX menu is first displayed. When a bank is selected, in most cases the
accelerator will be restored to its previous speed or explicitly set by the &An command. When your
image code takes over there are two important things to consider. One is that the CPU may be
executing at a faster (or even slower) speed than normal. And the other is that accesses to memory
may be bypassed by the accelerator’s built-in RAM or cache. This can cause issues with the ROMX
softswitches and previously loaded data from the ROM space from other banks, including the
firmware.

For example, whenever you switch back from one bank to the firmware in bank 0, you need to
execute the FACA FACA FAFE sequence. While the accelerator is doing its job trying to speed
things up it may see no need to actually access the “memory” location $FACA twice in a row. So
your code may not perform as expected in this case. There are several ways to remedy this situation:

1. Temporarily tell the accelerator to slow down and resume normal access
2. Explicitly disable the accelerator until your code is complete; then re-enable it.
3. Flush the accelerator’s cache or RAM to cause it to re-read the memory address.

In most cases option 1 will suffice. All accelerators need a way to resume normal operation when
accessing a Disk II drive since its code is driven by software timing loops. Because of this we can
always pick a slot (usually 6) where a disk controller would sit and access its ROM or I/O space
briefly. This will cause the accelerator to slow down typically for about 50 mS. You can see this
technique used in line 63 above. If you need more time (e.g. to move large chunks of code), you can
also add this to your copy loop as shown in line 83 above.

If you really must disable and re-enable an accelerator, there are routines in the firmware that can
help with this. They will be documented at a later time when the API is fixed.

Finally, with respect to the ZIP CHIPs, it is also possible that the internal cache will hold data from
other banks that were switched in during the launch process. This will cause unexpected results when
run with the accelerator on but will work fine when it is disabled. The solution for this problem is to
completely flush the 8K of cache on the ZIP CHIP. The code below is a straightforward way to do
this. You would probably execute this near the start of your image loader routine to ensure that you
copy the desired data from the ROM space into RAM.

